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Abstract: The so-called partition function is a sample moment statistic based on
blocks of data and it is often used in the context of multifractal processes. It will be
shown that its behaviour is strongly influenced by the tail of the distribution underlying
the data either in i.i.d. and weakly dependent cases. These results will be exploited
to develop graphical and estimation methods for the tail index of a distribution. The
performance of the tools proposed is analyzed and compared with other methods by
means of simulations and examples.
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1 Introduction
The partition function, also called the empirical structure function, is a special kind of
moment statistic. It is well known in the context of multifractal processes, where it is
used to estimate the so-called scaling function that describes scaling of moments of the
stochastic process. Scaling functions have characteristic concave shape if the process is
multifractal and can therefore be used to detect the multifractal nature of the process
(see Frisch (1980), Mandelbrot et al. (1997)).

In Section 2 we study the asymptotic properties of the partition function in the setting
of weakly dependent heavy-tailed data. In particular, we are interested in the rate of
growth of the partition function, measured as the power of the sample size n needed to
normalize a sequence of partition functions when n → ∞. The limiting behaviour involves
a nice interplay between two classical results from probability theory: the law of large
numbers and a generalized central limit theorem.

In Section 3 we present an application of the established results in the analysis of the
tail index of heavy-tailed data. Heavy-tailed distributions are of considerable importance
in modeling a wide range of phenomena in finance, geology, hydrology, physics, queuing
theory, and telecommunications. Pioneering work was done in Mandelbrot (1963), where
stable distributions with index less than 2 have been advocated for describing fluctuations
of cotton prices. In the field of finance, distributions of logarithmic asset returns can often
be fitted extremely well by Student’s t-distribution (see Heyde & Leonenko (2005) and ref-
erences therein). There are different ways to define the class of heavy-tailed distributions.
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In this paper, we say that the distribution of some random variable X is heavy-tailed
with index α > 0 if it has a regularly varying tail with index −α. This implies that

P (|X| > x) = L(x)
xα

,

where L(t), t > 0 is a slowly varying function, that is, L(tx)/L(x) → 1 as |x| → ∞, for
every t > 0. In particular, this implies that E|X|q < ∞ for q < α and E|X|q = ∞ for
q > α, which is sometimes also used to define heavy tails. The parameter α is called the
tail index and measures the "thickness" of the tails.

We propose a graphical method that can be used as an exploratory method in order
to detect heavy tails in the data. The graphs are used to detect the range of the tail index
of the underlying distribution. We also establish an estimation method for the unknown
tail index. Tail index estimators are usually based on upper order statistics and their
asymptotic properties. As an alternative, in Meerschaert & Scheffler (1998) an estimator
based on the asymptotics of the sum was proposed. In a certain way, the underlying idea
of our method is also based on the asymptotic properties of the sum. Our approach is
however more general and independent of the results in Meerschaert & Scheffler (1998).
As we will see, the blocking structure of the partition function enables extracting more
information about the tail index. Moreover, we go beyond the i.i.d. case and consider
weakly dependent samples. In Section 4 we present several examples based on simulated
and real world data that illustrate the performance of the methods proposed. Section 6
contains the proofs.

2 The partition function
Suppose we have a sample X1, . . . , Xn coming from a strictly stationary stochastic process
Xt, t ∈ Z+ (discrete time) or Xt, t ∈ R+ (continuous time) which has a heavy-tailed
marginal distribution with tail index α. The partition function can be defined as follows:

Sq(n, t) = 1
⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣∣∣∣
⌊t⌋∑
j=1

X⌊t⌋(i−1)+j

∣∣∣∣∣∣
q

, (1)

where q > 0 and 1 ≤ t ≤ n. In words, we partition the data into consecutive blocks
of length ⌊t⌋, we sum each block and take the power q of the absolute value of the sum.
Finally, we average over all ⌊n/t⌋ blocks. Notice that for t = 1 one gets the usual empirical
q-th absolute moment.

The partition function can also be viewed as a natural estimator of the q-th absolute
moment of the stationary increment process. Indeed, suppose {Yt} is a process with
stationary increments and one tries to estimate E|Y (t)|q, for fixed t > 0 based on a
discretely observed sample Y1, . . . , Yn. It is natural to consider

1
⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣Yi⌊t⌋ − Y(i−1)⌊t⌋

∣∣∣q .
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If we denote one step increments as Xi = Y (i) − Y (i − 1), then this is equal to (1). When
{Yt} is a Lévy process, X1, . . . , Xn are independent identically distributed.

In studying the asymptotic properties of Sq(n, t) we go beyond the i.i.d. case and
consider Xt, t ≥ 0 to be a strictly stationary process which satisfies a strong mixing
condition with an exponentially decaying rate. More precisely, for two sub-σ-algebras,
A ⊂ F and B ⊂ F on the same complete probability space (Ω, F , P ) define

a(A, B) = sup
A∈A,B∈B

|P (A ∩ B) − P (A)P (B)|.

Now for a process, Xt, t ≥ 0, consider Ft = σ{Xs, s ≤ t}, F t+τ = σ{Xs, s ≥ t + τ}. We
say that {Xt} has a strong mixing property if a(τ) = supt≥0 a(Ft, F t+τ ) → 0 as τ → ∞.
Strong mixing is sometimes also called α-mixing. If a(τ) = O(e−bτ ) for some b > 0 we say
that the strong mixing property has an exponentially decaying rate. We note that results
like Theorem 1 could probably be proven under some other weak form of dependence, but
this form will cover a large variety of examples.

Asymptotic properties of Sq(n, t) have been considered before in the context of mul-
tifractality detection (Heyde (2009), Sly (2005); see also Heyde & Sly (2008)). Instead of
keeping t fixed, we take it to be of the form t = ns for some s ∈ (0, 1), which allows the
blocks to grow as the sample size increases. It is clear that Sq(n, ns) will diverge since
s > 0. We are interested in the rate of divergence of this statistic, i.e., we consider the
limiting behaviour of ln Sq(n, ns)/ ln n. One can think of the limiting value as the smallest
power of n needed to normalize the partition function such that it will converge to some
random variable not identically equal to zero.

The next theorem summarizes the main results on the rate of growth. We additionally
assume that the sample has zero expectation in case it is finite. For practical purposes,
this is not a restriction as one can always demean the starting sequence. For the case
α ≤ 1 this is not necessary. A special case of this theorem has been proved in Sly (2005)
and cited in Heyde (2009). The proof of the theorem is given in Section 6.

Theorem 1. Suppose Xi, i ∈ N is a strictly stationary sequence that has a strong mixing
property with an exponentially decaying rate and suppose that Xi, i ∈ N has a heavy-tailed
marginal distribution with tail index α > 0. Suppose also that EXi = 0 when α > 1.
Then for q > 0 and every s ∈ (0, 1)

ln Sq(n, ns)
ln n

P→ Rα(q, s) :=



sq
α

, if q ≤ α and α ≤ 2,

s + q
α

− 1, if q > α and α ≤ 2,
sq
2 , if q ≤ α and α > 2,

max
{
s + q

α
− 1, sq

2

}
, if q > α and α > 2,

(2)

as n → ∞, where P→ stands for convergence in probability.

To explain the effects of the theorem, consider the simple case in which X1, X2, . . .
is a zero mean (if α > 1) i.i.d. sequence which is in the domain of normal attraction of
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some α-stable random variable. This means that ∑n
i=1 Xi/n1/α converges in distribution

to some Y with α-stable distribution. Suppose first that q < α. Consider

Sq(n, ns)
n

sq
α

= 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
∑⌊ns⌋

j=1 X⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣∣
q

.

When n → ∞, each of the internal sums converges in distribution to an independent copy
of Y . Since q < α, E|Y |q is finite, so the weak law of large numbers applies and shows
that the average tends to some non-zero and finite limit. For the case q > α, the weak
law cannot be applied, so the rate of growth will be higher, i.e.,

Sq(n, ns)
ns+ q

α
−1 =

∑⌊n1−s⌋
i=1

∣∣∣∣∣
∑⌊ns⌋

j=1 X⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣
q

n(1−s) q
α

.

Internal sums again converge to independent copies of Y . Since |Y |q has −α/q regularly
varying tail, it will be in the domain of normal attraction of (α/q)-stable distribution, so
the limit will be some positive random variable.

For the case α > 2, the variance is finite so the central limit theorem holds. When
q < α the rate of growth has an intuitive explanation by arguments similar to those just
mentioned above. When q > α, interesting things happen. Note that asymptotics of the
partition function is influenced by two things: averaging and the weak law on the one
side and distributional limit arguments on the other side. It will depend on s which of
the two influences prevails. For larger s, s + q/α − 1 < sq/2 and the rate will be as in the
case 2 < α < q, i.e.,

Sq(n, ns)
n

sq
2

= 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
∑⌊ns⌋

j=1 X⌊ns⌋(i−1)+j

n
s
2

∣∣∣∣∣∣
q

.

Internal sums converge in distribution to normal, which has all the moments finite and
the weak law applies. But for small s, the rate will be the same as that for the case
α < 2. What happens is that in this case internal sums have a small number of terms,
so convergence to normal is slow, much slower than the effect of averaging. This is the
reason why the rate is greater than sq/2.
Remark 1. Note that in general, the normalizing sequence for partial sums can be of the
form n1/αL(n) for some slowly varying function L. This does not affect the rate of growth.
Indeed, if Zn/naL(n) →d Z for some non-negative sequence Zn, then for every ε > 0,

P

(
ln Zn

ln n
< a − ε

)
= P

(
Zn < na−ε

)
=

P

(
Zn

naL(n)
<

1
L(n)nε

)
≤ P

(
Zn

naL(n)
<

1
2nε

)
→ 0,

since for n large enough n−ε < L(n) < nε, i.e. ln L(n)/ ln n → 0. Similar argument
applies for the upper bound. On the other hand, if ln Zn/ ln n →P a, then Zn grows at
the rate a, in the sense that for every ε > 0 there exist constants c1, c2 > 0 such that
P (c1 < Zn/na < c2) ≥ 1 − ε.
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Remark 2. A natural question arises from the previous discussion, whether it is possible
to identify a normalizing sequence and a distributional limit of Sq(n, ns). In some special
cases the limit can be easily deduced. Suppose Xi, i ∈ N is an i.i.d. sequence with α-
stable distribution. When q ≤ α, the rate of growth will be sq/α. Dividing the partition
function with n

sq
α and using the scaling property of stable distributions yields

Sq(n, ns)
n

sq
α

= 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
∑⌊ns⌋

j=1 X⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣∣
q

d= 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

|Xi|q .

Since q ≤ α, E|Xi|q < ∞, the weak law of large numbers implies

Sq(n, ns)
n

sq
α

P→ E|X1|q, n → ∞.

On the other hand, when q > α the weak law cannot be applied and the rate of growth
is s + q

α
− 1. Normalizing the partition function gives

Sq(n, ns)
ns+ q

α
−1 =

∑⌊n1−s⌋
i=1

∣∣∣∣∣
∑⌊ns⌋

j=1 X⌊ns⌋(i−1)+j

n
s
α

∣∣∣∣∣
q

n(1−s) q
α

d=
∑⌊n1−s⌋

i=1 |Xi|q

n(1−s) q
α

.

|Xi|q have −α/q regularly varying tail, it will be in the domain of normal attraction of
(α/q)-stable distribution. α/q < 1, so centering is not needed and by generalized central
limit theorem it follows that

Sq(n, ns)
ns+ q

α
−1

d→ Y, n → ∞,

with Y having α/q-stable distribution. We leave studying of different limit types to future
research.

3 Applications in heavy tail inference
In this section we discuss possible applications of the results developed in Section 2. First
we develop the notion and properties of scaling functions. We use this to propose a
graphical method that can be used to investigate the nature of the tails of the underlying
distribution. Also we define an estimator of the unknown tail index.

3.1 Scaling function
The definition of the scaling function is based on the notion of a partition function. For
fixed q, we simply define the scaling function as the slope of the simple linear regression
(with intercept) of ln Sq(n, ns)/ ln n on s. Using the well known formula for the slope of
the linear regression line, we can formally state:



6

Definition 1. For q > 0, the (empirical) scaling function at point q is defined as

τ̂N,n(q) =
∑N−1

i=1
i

N
ln Sq(n,n

i
N )

ln n
− 1

N−1
∑N−1

i=1
i

N

∑N−1
j=1

ln Sq(n,n
i

N )
ln n∑N−1

i=1

(
i

N

)2
− 1

N−1

(∑N−1
i=1

i
N

)2 , (3)

whereN − 1 is the number of equidistant points in (0, 1) used in the regression.

The definition can be justified by the following arguments. Using the notation of
Theorem 1, we denote

εn := Sq(n, ns)
nRα(q,s) .

This can be rewritten as

ln Sq(n, ns) = Rα(q, s) ln n + ln εn,

i.e.,
ln Sq(n, ns)

ln n
= Rα(q, s) + ln εn

ln n
.

The term ln εn/ ln n can be considered as an error term in the regression of ln Sq(n, ns)/ ln n
on q and s with model function Rα(q, s). One should count on the intercept in the model,
due to possible nonzero mean of an error. This complicated bivariate nonlinear regression
can be simplified by noticing that the model function Rα(q, s) is approximately linear
in s. Indeed, in the case α ≤ 2, the model function is exactly linear in s, while in case
α > 2, this holds only approximately due to the maximum term when q > α. Nonetheless,
it makes sense to consider the linear regression slope as in the definition of the scaling
function. N in equation (3) determines the number of data points used in regression.

Using Theorem 1 we can establish asymptotic properties of the scaling function.

Theorem 2. Suppose that the assumptions of the Theorem 1 hold. Then, for every q > 0,

lim
N→∞

plim
n→∞

τ̂N,n(q) = τ(q),

where plim stands for limit in probability and

τ(q) =



q
α
, if 0 < q ≤ α & α ≤ 2,

1, if q > α & α ≤ 2,
q
2 , if 0 < q ≤ α & α > 2,
q
2 + 2(α−q)2(2α+4q−3αq)

α3(2−q)2 , if q > α & α > 2.

(4)

Theorem 2 shows that, asymptotically the shape of the scaling function calculated
based on heavy-tailed data significantly depends on the value of the tail index α. Plots
of the asymptotic scaling function τ(q) for different values of α are shown on Figure 1.
When α ≤ 2, the scaling function is bilinear. In this case the first part of the plot is a
line with slope 1/α > 1/2 and second part is a horizontal line with value 1. A breakpoint
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occurs exactly at point α. In case α > 2, τ(q) is approximately bilinear, the slope of the
first part is 1/2 and again the breakpoint is at α. When α is large, i.e., α → ∞, it follows
from (4) that τ(q) ≡ q/2. This case corresponds to data coming from a distribution with
all moments finite, e.g., an independent normally distributed sample. This line will be
referred to as the baseline. On figure 1 the baseline is shown by a dashed line. The case
α ≤ 2 (α = 0.5, 1.0, 1.5) and α > 2 (α = 2.5, 3.0, 3.5, 4.0) are shown by dot-dashed and
solid lines, respectively.

Figure 1: Plots of scaling function τ(q) against the moment q

2 4 6 8 10
q

1

2

3

4

5

ΤHqL

4
3.5
3.
2.5
1.5
1
0.5
Α

3.2 Graphical method
In this section we propose a graphical method useful for exploratory analysis of tails of the
underlying distribution of the data. Since the scaling function shape is strongly influenced
by the tail index value, this motivates the use of plots of the empirical scaling function to
detect the tail index of a distribution. In particular the asymptotic results suggest that
there should be sharp differences between the plots for distributions with infinite variance
(α < 2) and the others (α > 2).

Based on a finite sample and chosen N , one can estimate the scaling function by
equation (3) for fixed value of q. Repeating this for a range of q values makes it possible
to give a plot of empirical scaling function τ̂N,n.

By examining the plot and comparing it with the baseline it is possible to say some-
thing about the nature of the tails of the underlying distribution. If τ̂N,n(q) is above the
baseline for q < 2 and nearly horizontal afterward then true α is probably less than 2.
By examining the point where the graph breaks, one can roughly estimate the interval
containing α. If τ̂N,n(q) coincides with the baseline for q < 2 and diverges from it after
q > 2, then the true α is probably greater than 2. The point at which deviation starts
can be an estimate for α. This also establishes a graphical method for distinguishing two
cases, whether α ≤ 2 or α > 2.

If the graph coincides with the baseline, then we can suspect that the data does not
exhibit heavy tails and that the moments are finite for the considered range of q. This
way one can distinguish between heavy tails or not. We illustrate how the method works
on simulated and real world examples in the next section.
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3.3 Estimation method
Besides the graphical method, a simple estimation method for the unknown tail index can
also be established based on asymptotic behaviour of the scaling function. Estimation of
the tail index is a well known problem and there has been a range of estimators proposed.
Probably the most popular estimator is the one proposed by Hill Hill (1975). Pickands
and moment estimator are also heavily used. A nice survey of these estimators and their
properties can be found in De Haan & Ferreira (2006), Embrechts et al. (1997); see also
Meerschaert & Scheffler (2003). Various extensions and improvements of these estimators
have been made making them suitable for data beyond i.i.d. case. As follows from the
assumptions of Theorem 1, the estimator defined here should work well for stationary
strong mixing samples, thus extending the problem from the simplest i.i.d. case.

The basic idea of the method is to estimate α by fitting the empirical scaling function
to the asymptotic form τ(q). This is done by the means of ordinary least squares. More
precisely, for points qi ∈ (0, qmax), i = 1, . . . , m, calculate τ̂i = τ̂N,n(qi) using the Equation
(3). Estimator is defined as

α̂ = arg min
α∈(0,∞)

m∑
i=1

(τ̂i − τ(qi))2. (5)

For practical reasons, due to the complexity of the expression for τ(q), the method is
divided into two cases: α ≤ 2 and α > 2; i.e., corresponding part of τ(q) is used as a
model function in (5), depending where the true value of α is. Therefore it is necessary to
first detect whether we are in the case of infinite variance or not. This can be accomplished
by using the graphical method described above. In the inconclusive case, it is advisable
to compute both estimates and compare the quality of the fit.

The estimator (5) is defined from the asymptotic behaviour of the partition function
in a two step nonlinear regression procedure. This makes it complicated to establish
standard properties of this estimator and derive its limiting distribution. To investigate
variability of the estimator we provide in the Subsection 4.1 a small simulation study
comparing the proposed estimator with the Hill estimator.

3.4 Plots of the empirical scaling functions
The shape of the empirical scaling function is not always ideal as its asymptotic form.
However, most plots are very close to their theoretical form. To illustrate this, we sim-
ulate 10 independent samples of size 1000 in six different settings. The first three cases
studied are i.i.d. samples and others are stationary and weakly dependent, in accordance
to the assumptions in Theorem 1. Figure 2 summarizes the plots of the empirical scal-
ing functions (dotted) together with the corresponding asymptotic form (solid) and the
baseline (dot-dashed). All scaling functions are calculated N value around 30. We find
no evidence that a different choice improves the estimation substantially.

The first group of samples is generated from a stable distribution with stable index
equal to 1. The second one is generated from a Student t-distribution with 3 degrees
of freedom, a parameter that corresponds to the tail index. Recall that the probability
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density function of Student’s t-distribution T (ν, δ, µ) is

student[ν, δ, µ](x) =
Γ(ν+1

2 )
δ
√

πΓ(ν
2 )

(
1 +

(
x − µ

δ

)2
)− ν+1

2

, x ∈ R, (6)

where δ > 0 is the scaling parameter, ν the tail parameter (usually called degrees of
freedom) and µ ∈ R the location parameter. Figures 2(a) and 2(b) show that for both
stable and Student case the empirical scaling functions are close to their theoretical form.
Both plots are approximately bilinear and by identifying the breakpoint one can roughly
guess the tail index value. Also, it is clear from shapes of the empirical scaling functions
that variance is infinite in the first case and finite in the second. The third sample is
generated from a standard normal distribution. From Figure 2(c) one can surely doubt
the existence of heavy-tails in these samples since the empirical scaling functions almost
coincide with the baseline q/2. This shows that estimated scaling functions have potential
of providing self contained characterization of the tail.

Examples shown on Figures 2(d)-2(f) are based on dependent data. Dependent sam-
ples are generated as sample paths of two types of stochastic processes: Ornstein-Uhlenbeck
(OU) type processes and diffusions. Recall that a stochastic process X = {Xt, t ≥ 0} is
said to be of OU type if it satisfies a SDE of the form

dXt = −λXtdt + dLλt, t ≥ 0, (7)

where L = {Lt, t ≥ 0} is the background driving Lévy process (BDLP) and λ > 0. We
consider strictly stationary solutions of SDE (7). The α-stable OU type process with
parameter λ > 0 and 0 < α < 2 introduced by Doob (1942) is the solution of the SDE
(7), with L = {Lt, t ≥ 0} the standard α-stable Lévy motion (Janicki & Weron (1994)).
Since the distribution of increments for the BDLP L is known in this case, we consider the
Euler’s scheme of simulation by replacing differentials in Equation (7) with differences.
Student OU type process has been introduced in Heyde & Leonenko (2005). It can be
shown that there exists a strictly stationary stochastic process X = {Xt, t ≥ 0}, which
has a marginal t-distribution T (ν, δ, µ) with density function (6) and BDLP L such that
(7) holds for arbitrary λ > 0. This stationary process X is referred to as the Student OU
type process. Moreover, the cumulant transform of BDLP L can be expressed as

κL1(ζ) = log E{eiζL1} = iζµ − δ|ζ|
Kν/2−1(ζµ)
Kν/2(ζµ)

, ζ ∈ R, ζ ̸= 0,

where K is the modified Bessel function of the third kind and κL1(0) = 0 (Heyde &
Leonenko (2005)). Since, for the Student OU process, the exact law of the increments
of the BDLP is unknown, we use the approach introduced by Taufer & Leonenko (2009)
to simulate discrete Student OU processes. This approach circumvents the problem of
simulating the jumps of the BDLP and is easily applicable when an explicit expression
of the cumulant transform is available; for more details see Taufer & Leonenko (2009).
Both OU processes considered can be shown to posses strong mixing property with an
exponentially decaying rate (see Masuda (2004)). Last process considered is stationary
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Student diffusion. In order to define the Student diffusion, we introduce the stochastic
differential equation (SDE):

dXt = −θ (Xt − µ) dt +

√√√√ 2θδ2

ν − 1

(
1 +

(
Xt − µ

δ

)2)
dBt, t ≥ 0, (8)

see Bibby et al. (2005) and Heyde & Leonenko (2005), where ν > 1, δ > 0, µ ∈ R, θ >
0, and B = {Bt, t ≥ 0} is a standard Brownian motion. SDE (8) admits a unique
ergodic Markovian weak solution X = {Xt, t ≥ 0} which is a diffusion process with the
invariant symmetric scaled Student’s t-distribution with probability density function (6).
The diffusion process which solves the SDE (8) is called the Student diffusion. If X0 ∼
T (ν, δ, µ), the Student diffusion is strictly stationary. According to Leonenko & Šuvak
(2010), the Student diffusion is a strong mixing process with an exponentially decaying
rate. For the simulation of paths of the Student diffusion process X = {Xt, t ≥ 0}
with known values of parameters, we have used the Milstein scheme (for details see Iacus
(2008)). Both OU processes were generated with auto-regression parameter λ = 1 and
diffusion was generated with θ = 2.

From examples on dependent data we can conclude that the shape of the scaling
function is not affected with this weak form of dependence present. Again, empirical
scaling functions are very near their asymptotic form.

We also report the mean of tail index values estimated by Equation (5): i.i.d. stable(1)
- 1.29, i.i.d. Student t(3) - 3.30, i.i.d. N (0, 1) - 4.73, stable(1) OU - 1.10, Student t(3)
OU - 3.34, Student t(3) diffusion - 3.48.

4 Examples and simulations
In this section we provide several examples to illustrate how the proposed methods work.
We also compare the methods proposed with the existing ones.

Hill’s estimator is the best known estimator of the tail index. For what follows, let
X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of the sample X1, X2, · · · Xn. For
1 ≤ k ≤ n, the Hill estimator based on k upper order statistics is

α̂Hill
k =

(
1
k

k∑
i=1

log
X(i)

X(k+1)

)−1

. (9)

Hill’s estimator posses many desirable asymptotic properties, provided k = k(n) is a
sequence satisfying limn→∞ k(n) = ∞, and limn→∞ (k(n)/n) = 0 (see, e.g., Embrechts
et al. (1997)). Properties of the Hill estimator have been extensively studied in different
settings (for example, see Rootzén et al. (1990) for strong mixing sequences).

Another estimator of the tail index is the so called moment estimator proposed by
Dekkers et al. (1989). Define for r = 1, 2

H
(r)
k = 1

k

k∑
i=1

(
log

X(i)

X(k+1)

)r

.
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0 2 4 6 8 10

q

1

2

3

4

5

ΤHqL

(b) Student t(3) i.i.d.
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(f) Student t(3) diffusion

Figure 2: Plots of empirical scaling functions
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A moment estimator based on k order statistics is given by

α̂M
k =

1 + H
(1)
k + 1

2

(H(2)
k )2

H
(1)
k

− 1

−1


−1

. (10)

Both equations actually yield a sequence of estimated values for different values of k.
There exist several methods on how to choose k in order to minimize asymptotic mean
squared error. See Beirlant et al. (2006) for a survey of these methods. Another possibility
is to plot estimated values against k. A heuristic rule is to look for the place where the
graph stabilizes and report this as the estimated value. For the Hill estimator this is
usually called the Hill plot. We use this approach in the following examples to analyze
the behaviour of the tail.

It is important to stress that Hill plots cannot be used as graphical tool for establishing
heavy tail property of the data as this can be misleading in cases when the tails are light.
On the other hand, plots of the moment estimator can be used for this purpose (see
Resnick (1997)). There are other exploratory tools for inspecting whether tails are heavy
or not. One of the most frequently used tools is a variation of the QQ plot. By choosing
1 ≤ k ≤ n one can plot the points(

− ln
(

i

k + 1

)
, ln X(i)

)
, i = 1, . . . , k.

If the data is heavy-tailed with index α the plot should be roughly linear with slope
1/α. This is no more than the standard QQ plot of log-transformed data on exponential
quantiles. This graphical method can be used to define estimator (Kratz & Resnick
(1996)), however, we will use it only as a exploratory tool. For k = n this plot is
sometimes called Zipf’s plot. We will refer to it simply as the QQ plot.

4.1 Simulation study
In this subsection we provide a small simulation study in order to investigate finite sample
properties of the estimator defined by (5). We choose to generate i.i.d. random samples
from the following distributions: stable with α = 0.5, stable with α = 1.5, Student t(2.5),
Student t(3) and Student t(4). For each distribution we have generated 250 samples of
length 1000 and calculated the estimator (5).

In order to give a picture of the estimator’s performance, we compare it with the Hill
estimator in the following manner. For each sample we compute the value of the Hill
estimator for each k in the range {1, . . . , 200}. After this is done for all 250 samples, we
choose k such that mean square error (MSE) is minimal. So this is the smallest MSE that
can be achieved with the Hill estimator on the generated samples. It is clear that this
comparison is unfair to the estimator (5) as in practice one can hardly choose an optimal
k for the Hill estimator.

Table 1 reports the estimated bias and MSE as well as the optimal k for the Hill
estimator. It is clear that variability of the estimator is worse than that of the Hill,
although for larger α the difference is not so significant. Moreover the proposed estimator
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shows a smaller bias for larger values of the tail index. It is important to have in mind that
MSE for the Hill estimator reported in Table 1 are impossible to obtain without additional
information about the underlying distribution. On the other hand, the computation of
the estimator (5) is straightforward and does not require choosing extra parameters. We
show another example of this advantage below.

Table 1: Simulation study and comparison with the Hill estimator

α̂ α̂Hill
k

µ(α̂) − α MSE k µ(α̂Hill
k ) − α MSE

stable(0.5) 0.1223 0.04629 98 -0.0218 0.0025
stable(1.5) 0.1452 0.08873 200 0.0110 0.0108
Student t(2.5) 0.5253 0.7122 42 -0.2442 0.1685
Student t(3) 0.2977 0.7832 39 -0.4278 0.3279
Student t(4) -0.2807 1.0697 17 -0.5270 0.8834

4.2 Example 1 - non heavy-tailed data
With this example we try to illustrate the potential of scaling functions as a graphical
method that can distinguish between heavy-tailed and light-tailed scenario. Different
methods are tested on a random sample from standard normal distribution of size 2000.
Results are shown on Figure 3. QQ plot for 500 largest data points exhibits nonlinearity
thus indicating that Pareto type tail is not a good fit for the data (Figure 3(a)). For the
purpose of tail detection we plot 1/α values for the moment estimator. This is a more
general extreme value index (see e.g. Embrechts et al. (1997) for details). From Figure
3(b) one can see that plot stabilizes at a negative value near zero. This is indication
of light tails. The scaling function shown on Figure 3(c) is completely in accordance
with this analysis. Indeed, it almost coincides with the baseline that corresponds to non
heavy-tailed data.

4.3 Example 2 - departure from Pareto tail
Hill’s estimator, as well as many others, is known to behave poorly if the slowly varying
function in the tail is far away from constant. We compare this behaviour with the
performance of the scaling function estimator. Consider two distribution F1, F2 defined
by their survival functions

F 1(x) = 1 − F1(x) = 1
x

1
2
, x ≥ 1, (11)

F 2(x) = 1 − F2(x) = e
1
2

x
1
2 ln x

, x ≥ e. (12)

Both distributions are heavy-tailed with tail index equal to 1/2. We generate samples from
these two distributions with 5000 observations. The corresponding Hill plots are shown
in Figure 4(a). While for the Pareto distribution F1 Hill provides very good results, for
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Figure 3: Example 1 - non heavy-tailed data
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(c) Scaling function

Figure 4: Example 2 - departure from Pareto tail

F2 it is impossible to draw any conclusion about the value of the tail index. The plot
fails to stabilize at some value and produces a departure from the true index value. This
is sometimes called Hill horror plot (see Embrechts et al. (1997)). The result is similar
with the moment estimator: a non-constant slowly varying function in the tail produces
a significant bias, as shown on Figure 4(b).

Figure 4(c) shows the empirical scaling functions for the same samples together with
the theoretical one and the baseline. One can see that scaling functions are very close to
the theoretical one, especially in the first part of the plot, before the breakpoint. It seems
that non-constant slowly varying function affects the estimation but the effect is not so
dramatic as for the other two estimator. Calculating estimates using (5) yields values
α̂1 = 0.53 and α̂2 = 0.67.

4.4 Example 3 - Danish fire insurance claims
Finally, we present a practical example. This example is similar to Example 6.2.9 from
Embrechts et al. (1997). The data corresponds to Danish fire insurance claims in the
period from 1980 to 1990. There are 2167 observations and the amounts are in millions
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Figure 5: Example 3 - Danish fire insurance claims

of Danish Kroner.† The analysis made in Embrechts et al. (1997) suggests a tail index
estimate around 1.618 (see Example 6.4.5). Hill and moment estimator plots (figures 5(a)
and 5(b)) confirm the index value is around 1.5. Empirical scaling function calculated from
the data together with the baseline is shown on Figure 5(c). The data has been demeaned
to adjust to the assumptions of the Theorem 1. The scaling function is approximately
bilinear: the first part of the plot has slope greater than the baseline and second part is
nearly horizontal. This points out that the variance is infinite. The breakpoint occurs at
around 1.5, which indicates the possible value of the tail index. Estimating by Equation
(5) yields the value 1.419, consistent with the previous analysis done in Embrechts et al.
(1997).

†The data can be obtained from: http://www.ma.hw.ac.uk/ mcneil/data.html
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5 Summary and discussion
In the first part of the paper we present results on the asymptotic behaviour of a special
kind of moment statistic. This behaviour is strongly influenced by the existence of the
moments of the underlying distribution. The limiting behaviour involves a nice interplay
between two classical results from probability theory: the law of large numbers and a
generalized central limit theorem. Established results provide a deeper insight into the
rate of divergence of sample moments. From a probabilistic point of view, the result is
interesting in its own matter.

In the second part we discuss possible applications in the context of tail index esti-
mation. We establish a quantity called the scaling function which can be though of as
the signature of heavy tails. It has the ability to reflect tail properties on a single plot.
This property is used for establishing the procedures for investigating tail behaviour and
estimating tail index.

6 Proofs
The following is a version of Rosenthal’s inequality for strong mixing sequences needed in
the proof, precisely Theorem 2 in section 1.4.1 of Doukhan (1994):

Lemma 1. Fix q > 0 and suppose (Yk) is a sequence of random variables and let aY (m)
be the corresponding strong mixing coefficient function. Suppose that there exists ζ > 0
and c ≥ q, c ∈ N such that

∞∑
m=1

(m + 1)2c−2 (aY (m))
ζ

2c+ζ < ∞, (13)

and suppose E|Yk|q+ζ < ∞ and Yk are centered for all k. Then there exists some constant
K depending only on q and aY (m) such that

E

∣∣∣∣∣
l∑

k=1
Yk

∣∣∣∣∣
q

≤ KD(q, ζ, l),

where

D(q, ζ, l) =


L(q, 0, l), if 0 < q ≤ 1,

L(q, ζ, l), if 1 < q ≤ 2,

max
{
L(q, ζ, l), (L(2, ζ, l))

q
2
}

, if q > 2,

L(q, ζ, l) =
l∑

k=1

(
E |Yk|q+ζ

) q
q+ζ .

Proof of theorem 1. We split the proof into three parts depending whether q > α, q < α
or q = α.
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(a) Let q > α. First we show an upper bound for the limit in probability.
Let ϵ > 0. Notice that

n
ln Sq(n,ns)

ln n = Sq(n, ns) = 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

X⌊ns⌋(i−1)+j

∣∣∣∣∣∣
q

.

Let δ > 0 and define

Yj,n = Xj1
(
|Xj| ≤ n

1
α

+δ
)

, j = 1, . . . , n, n ∈ N,

Zj,n = Yj,n − EYj,n,

ξi =

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zns(i−1)+j,n

∣∣∣∣∣∣
q

, i = 1, . . . , ⌊n1−s⌋.

Before splitting the cases based on different α values, we derive some facts that will be
used later. Due to stationarity, for fixed n, the ξi’s are identically distributed so that
E
[

1
k

∑k
i=1 ξi

]
= E[ξ1]. Yj,n has finite moments of all orders and by using Karamata’s

theorem (Embrechts et al. (1997)), for arbitrary r > α it follows

E|Zj,n|r ≤ E|Yj,n|r =
∫ ∞

0
P (|Yj,n|r > x)dx =

∫ nr( 1
α +δ)

0
P (|Xj|r > x)dx

=
∫ nr( 1

α +δ)

0
L(x

1
r )x− α

r dx ≤ C1n
r( 1

α
+δ)(− α

r
+1) = C1n

r
α

−1+δ(r−α)

(14)

Next, notice that, for fixed n, Zj,n, j = 1, . . . , n is a stationary sequence. By definition
EZj,n = 0 and also E|Zj,n|q+ζ < ∞ for every ζ > 0. Since Zj,n is no more than a
measurable transformation of Xj, the mixing properties of Zj,n are inherited from those
of sequence Xj. This means that there exists a constant b > 0 such that the mixing
sequence aX(m) = aZ(m) = O(e−bm) as m → ∞. It follows that

∞∑
m=1

(m + 1)2c−2 (aZ(m))
ζ

2c+ζ ≤
∞∑

m=1
(m + 1)2c−2K1e

−bm ζ
2c+ζ < ∞

for every choice of c ∈ N and ζ > 0. Hence we can apply Lemma 1 for n fixed to get

Eξ1 = E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Zj,n

∣∣∣∣∣∣
q

≤


KL(q, 0, ⌊ns⌋), if 0 < q ≤ 1,

KL(q, ζ, ⌊ns⌋), if 1 < q ≤ 2,

K max
{
L(q, ζ, ⌊ns⌋), (L(2, ζ, ⌊ns⌋))

q
2
}

, if q > 2.

(15)

Notice that none of the previous arguments uses assumptions on α. Now we split the
cases:

•α > 2 Because for q > α, utilizing Equation (14), we can choose ζ so small such that
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ζ < qδα (in order to achieve n− q
q+ζ

(1+δα) < n−1) to obtain

L(q, ζ, ⌊ns⌋) =
⌊ns⌋∑
j=1

(
E |Zj,n|q+ζ

) q
q+ζ ≤ C2n

sn( q+ζ
α

−1+δ(q+ζ−α))( q
q+ζ )

= C2n
s+ q

α
− q

q+ζ
(1+δα)+δq ≤ C2n

s+ q
α

−1+δq, (16)

(L(2, ζ, ⌊ns⌋))
q
2 =

⌊ns⌋∑
j=1

(
E |Zj,n|2+ζ

) 2
2+ζ


q
2

≤ n
sq
2
(
E|X1|2+ζ

) q
2+ζ ≤ C3n

sq
2 .

Hence Eξ1 ≤ C4n
max{s+ q

α
−1+δq, sq

2 }.

•1 < α ≤ 2 Bound for L(q, ζ, ⌊ns⌋) is the same as in (16), so if α < q ≤ 2 we have Eξ1 ≤
KL(q, ζ, ⌊ns⌋) ≤ C4n

s+ q
α

−1+δq. If q > 2, using Equation (14) and choosing ζ < 2δα,
yields

(L(2, ζ, ⌊ns⌋))
q
2 =

⌊ns⌋∑
j=1

(
E |Zj,n|2+ζ

) 2
2+ζ


q
2

≤ n
sq
2
(
C1n

2+ζ
α

−1+δ(2+ζ−α)
) q

2+ζ

≤ C5n
sq
2 + q

α
− q

2+ζ
(1+δα)+δq ≤ C5n

sq
2 + q

α
− q

2 +δq.

But, for q > 2

s + q

α
− 1 − sq

2
− q

α
+ q

2
=
(

1 − q

2

)
(s − 1) > 0,

so, s + q
α

− 1 > sq
2 + q

α
− q

2 and

K max
{
L(q, ζ, ⌊ns⌋), (L(2, ζ, ⌊ns⌋))

q
2
}

≤ C6n
s+ q

α
−1+δq.

We conclude that for every q > α, Eξ1 ≤ C7n
s+ q

α
−1+δq.

•0 < α ≤ 1 If q > 1 we can repeat arguments from the previous case. If α < q ≤ 1, again by
(14)

L(q, 0, ⌊ns⌋) =
⌊ns⌋∑
j=1

E|Zj,n|q ≤ C2n
s+ q

α
−1+δ(q−α) ≤ C2n

s+ q
α

−1+δq,

so, for every q > α, Eξ1 ≤ C8n
s+ q

α
−1+δq.

Next, notice that

P
(

max
i=1,...,n

|Xi| > n
1
α

+δ
)

≤
n∑

i=1
P
(
|Xi| > n

1
α

+δ
)

≤ n
L(n 1

α
+δ)

(n 1
α

+δ)α
≤ C9

L(n 1
α

+δ)
nαδ

,
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Sq(n, ns) = 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

(
X⌊ns⌋(i−1)+j + EY⌊ns⌋(i−1)+j,n − EY⌊ns⌋(i−1)+j,n

)∣∣∣∣∣∣
q

≤ max{1, 2q−1} 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

(
X⌊ns⌋(i−1)+j − EY⌊ns⌋(i−1)+j,n

)∣∣∣∣∣∣
q

+ max{1, 2q−1} 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

EY⌊ns⌋(i−1)+j,n

∣∣∣∣∣∣
q

≤ max{1, 2q−1} 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

(
X⌊ns⌋(i−1)+j − EY⌊ns⌋(i−1)+j,n

)∣∣∣∣∣∣
q

+ max{1, 2q−1}C1n
s+ q

α
−1+δq.

By partitioning on the event {Xi = Yi, ∀i} and its complement, using Markov’s inequality
and preceding results we conclude for the case α > 2:

P

(
ln Sq(n, ns)

ln n
> max

{
s + q

α
− 1,

sq

2

}
+ δq + ϵ

)

= P
(

Sq(n, ns) > nmax{s+ q
α

−1, sq
2 }+δq+ϵ

)

≤ P

max{1, 2q−1} 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

(
X⌊ns⌋(i−1)+j − EY⌊ns⌋(i−1)+j,n

)∣∣∣∣∣∣
q

+ max{1, 2q−1}C1n
s+ q

α
−1+δq > nmax{s+ q

α
−1, sq

2 }+δq+ϵ


≤ P

max{1, 2q−1} 1
⌊n1−s⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Z⌊ns⌋(i−1)+j

∣∣∣∣∣∣
q

+ max{1, 2q−1}C1n
s+ q

α
−1+δq >

nmax{s+ q
α

−1, sq
2 }+δq+ϵ

+ P
(

max
i=1,...,n

|Xi| > n
1
α

+δ
)

≤ max{1, 2q−1}Eξ1 + max{1, 2q−1}C1n
s+ q

α
−1+δq

nmax{s+ q
α

−1, sq
2 }+δq+ϵ

+ C9
L(n 1

α
+δ)

nαδ

≤ C10n
max{s+ q

α
−1+δq, sq

2 }

nmax{s+ q
α

−1, sq
2 }+δq+ϵ

+ C9
L(n 1

α
+δ)

nαδ
→ 0.

Since ϵ and δ are arbitrary, it follows

plim
n→∞

ln Sq(n, ns)
ln n

≤ max
{

s + q

α
− 1,

sq

2

}
.

In case α ≤ 2 we can repeat the previous with ns+ q
α

−1+δq instead of nmax{s+ q
α

−1+δq, sq
2 }

and get
plim
n→∞

ln Sq(n, ns)
ln n

≤ s + q

α
− 1.
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We next show the lower bound in two parts.
We first consider the case α > 2 and assume that s + q

α
− 1 ≤ sq

2 . Denote

σ2 = lim
n→∞

E
(∑n

j=1 Xj

)2

n
,

ρn = P

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣ > n
s
2 σ

 .

Since the sequence Xj is stationary and strong mixing with an exponential decaying rate
and since E|Xj|2+ζ < ∞ for ζ > 0 sufficiently small, the Central Limit Theorem holds
(see Hall & Heyde (1980) Corollary 5.1.) and σ2 exists. Since P (|N (0, 1)| > 1) > 1/4,
it follows that for n large enough ρn > 1/4. Recall that if MB(n, p) is the sum of n
stationary mixing indicator variables with expectation p then ergodic theorem implies
MB(n, p)/n → p, a.s.

P

(
ln Sq(n, ns)

ln n
<

sq

2
− ϵ

)
= P

(
Sq(n, ns) < n

sq
2 −ϵ

)

≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣
q

< n
sq
2 −ϵ+1−s


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣ > n
s
2 σ

 <
n

sq
2 −ϵ+1−s

n
sq
2 σq


= P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣ > n
s
2 σ

 <
n1−s−ϵ

σq


≤ P

(
MB(⌊n1−s⌋, 1/4) <

n1−s−ϵ

σq

)
→ 0,

hence
plim
n→∞

ln Sq(n, ns)
ln n

≥ sq

2
.

For the second part, assume that s + q
α

− 1 > sq
2 . Notice that in this case it must hold

1
α

− s
2 > 0. We can assume that ϵ < 1

α
− s

2 . Indeed, otherwise we can choose 0 < ϵ̃ < 1
α

− s
2

and continue the proof with it in place of ϵ by observing that

P

(
ln Sq(n, ns)

ln n
< s + q

α
− 1 − ϵ

)
≤ P

(
ln Sq(n, ns)

ln n
< s + q

α
− 1 − ϵ̃

)
.

The main fact behind the following part of the proof is that ∑ |Xi|q ≈ max |Xi|q and
that s is small, which makes the blocks to grow slow. It is generally known that under
the assumed mixing condition the asymptotic behaviour of partial maxima is the same as
that of the associated independent sequence (see Leadbetter et al. (1982)). This means
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that maxj=1,...,n |Xj|/n1/α converges in distribution to some positive random variable, so
that

P
(

max
j=1,...,n

|Xj| < 2n
1
α

−ϵ
)

→ 0.

Let l ∈ N be such that |Xl| = maxj=1,...,n |Xj|. Then, for some k ∈ {1, 2, . . . , ⌊n1−s⌋} we
have l ∈ J := {⌊ns⌋(k−1)+1, . . . , ⌊ns⌋k}. Assumption α > 2 ensures that E|X1|2+ζ < ∞
for some ζ > 0. Applying Markov’s inequality and then Lemma 1 yields

P

∣∣∣∣∣∣
∑

j∈J ,j ̸=l

Xj

∣∣∣∣∣∣ > n
1
α

−ϵ

 ≤
E
(∑

j∈J ,j ̸=l Xj

)2

n
2
α

−2ϵ

≤
K1

∑
j∈J ,j ̸=l

(
E|Xj|2+ζ

) 2
2+ζ

n
2
α

−2ϵ
≤ K2n

s

n
2
α

−2ϵ
= K2n

s− 2
α

+2ϵ → 0, as n → ∞,

since s − 2
α

+ 2ϵ < 0 by the assumption in the proof. Combining this it follows

P

(
ln Sq(n, ns)

ln n
< s + q

α
− 1 − ϵ

)
= P

(
Sq(n, ns) < ns+ q

α
−1−ϵ

)

≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣
q

< n
q
α

−qϵ


≤ P

∣∣∣∣∣∣
∑
j∈J

Xj

∣∣∣∣∣∣
q

< n
q
α

−qϵ

 = P

∣∣∣∣∣∣
∑
j∈J

Xj

∣∣∣∣∣∣ < n
1
α

−ϵ


≤ P

(
|Xl| < 2n

1
α

−ϵ
)

+ P

∣∣∣∣∣∣
∑

j∈J ,j ̸=l

Xj

∣∣∣∣∣∣ > n
1
α

−ϵ

 → 0,

as n → ∞. Hence,
plim
n→∞

ln Sq(n, ns)
ln n

≥ max
{

s + q

α
− 1,

sq

2

}
.

For the case 0 < α ≤ 2 we just need a different estimate for the partial sum containing
maximum. Choose γ such that 0 < γ < α. Again we use Markov’s inequality

P

∣∣∣∣∣∣
∑

j∈J ,j ̸=l

Xj

∣∣∣∣∣∣ > n
1
α

−ϵ

 ≤
E
∣∣∣∑j∈J ,j ̸=l Xj

∣∣∣α−γ

n1−αϵ− γ
α

+ϵγ
.

From Lemma 1 one can easily bound this expectation by K3n
s for some constant K3.

Choosing ϵ and γ small enough to make s − 1 + αϵ + γ
α

− ϵγ < 0, we get

P

∣∣∣∣∣∣
∑

j∈J ,j ̸=l

Xj

∣∣∣∣∣∣ > n
1
α

−ϵ

 ≤ K3n
s

n1−αϵ− γ
α

+ϵγ
→ 0, as n → ∞,

and this completes the (a) part of the proof.
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(b) Now let q < α.
We first show the upper bound on the limit, i.e. we analyse

P

(
ln Sq(n, ns)

ln n
>

sq

β(α)
+ ϵ

)
= P

(
Sq(n, ns) > n

sq
β(α) +ϵ

)

≤ P

 1
⌊ns−1⌋

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j,n

∣∣∣∣∣∣
q

> n
sq

β(α) +ϵ

 ≤
E
∣∣∣∑⌊ns⌋

j=1 Xj

∣∣∣q
n

sq
β(α) +ϵ

,

where we write β(α) = α or 2 corresponding to α ≤ 2 or α > 2. To show that this tends
to zero, we first consider the case α > 2. If q > 2, using Lemma 1 with ζ small enough it
follows

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣
q

≤ C1 max{ns, n
sq
2 }.

For the case q ≤ 2 we combine Jensen’s inequality with Lemma 1

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣
q

≤

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣
2


q
2

≤ C2n
sq
2 .

In case α ≤ 2 we choose γ small enough to make q < α − γ < α and we get

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣
q

≤

E

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣
α−γ

q
α−γ

≤ C3n
sq

α−γ .

We next prove the lower bound. For the case α > 2 the proof is the same as the proof
of (a). Assume α ≤ 2. The arguments go along the same line, but here we avoid
using limit theorems for partial sums of stationary sequences. Instead we use before
mentioned asymptotic behaviour of the partial maximum, that is, we use the fact that
maxj=1,...,⌊ns⌋ |Xj|/ns/α converges in distribution to some positive random variable. This
means we can choose some constant m > 0 such that for large enough n

P

(
maxj=1,...,⌊ns⌋ |Xj|

n
s
α

> 2m

)
>

1
4

.

Denote |Xl| = maxj=1,...,⌊ns⌋ |Xj|. Then it follows that

P

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xj

∣∣∣∣∣∣ > mn
s
α

 ≥ P
(
|Xl| > 2mn

s
α

)
+ P

∣∣∣∣∣∣
⌊ns⌋∑

j=1,j ̸=l

Xj

∣∣∣∣∣∣ < mn
s
α

 >
1
4

.

Now we conclude as before, denoting by MB(n, p) the sum of n stationary mixing indica-
tor variables with mean p and noting that ergodic theorem implies MB(n, p)/n → p > 0,
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a.s.

P

(
ln Sq(n, ns)

ln n
<

sq

α
− ϵ

)
= P

(
Sq(n, ns) < n

sq
α

−ϵ
)

≤ P

⌊n1−s⌋∑
i=1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣
q

< n
sq
α

−ϵ+1−s


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣ > n
s
α m

 <
n

sq
α

−ϵ+1−s

n
sq
α mq


≤ P

⌊n1−s⌋∑
i=1

1

∣∣∣∣∣∣
⌊ns⌋∑
j=1

Xns(i−1)+j

∣∣∣∣∣∣ > n
s
α m

 <
n1−s−ϵ

mq


≤ P

(
MB(⌊n1−s⌋, 1/4) <

n1−s−ϵ

mq

)
→ 0,

and this proves the lower bound.

(c) It remains to consider the case q = α. But this is simple since for every δ > 0

ln Sq−δ(n, ns)
ln n

≤ ln Sq(n, ns)
ln n

≤ ln Sq+δ(n, ns)
ln n

,

so the limit must be continuous in q and the claim follows from previous cases.

Proof of theorem 2. Fix q > 0 and denote yn(s) = ln Sq(n, ns)/ ln n. We first show that

plim
n→∞

τ̂N,n(q) =
∑N−1

i=1
i

N
Rα(q, i

N
) − 1

N−1
∑N−1

i=1
i

N

∑N−1
j=1 Rα(q, i

N
)∑N−1

i=1

(
i

N

)2
− 1

N−1

(∑N−1
i=1

i
N

)2 . (17)

Let ε > 0 and δ > 0. By Theorem 1, for each i = 1, . . . , N there exists ni such that

P
(∣∣∣∣yn( i

N
) − Rα(q,

i

N
)
∣∣∣∣ >

ε

N − 1

)
<

δ

N − 1
,

for n ≥ ni. Take nmax = maxi=1,...,N ni. Then for all n ≥ nmax,

P

(
N−1∑
i=1

i

N

∣∣∣∣yn( i

N
) − Rα(q,

i

N
)
∣∣∣∣ > ε

)
≤ P

(
N−1∑
i=1

∣∣∣∣yn( i

N
) − Rα(q,

i

N
)
∣∣∣∣ > ε

)

≤ (N − 1)P
(∣∣∣∣yn( i

N
) − Rα(q,

i

N
)
∣∣∣∣ >

ε

N − 1

)
< δ.

This proves the convergence for two terms depending on n and claim now follows by
continuous mapping theorem. By dividing denominator and numerator of the fraction in
limit (17) by 1/(N − 1), one can see all the sums involved as Riemann sums based on
equidistant partition. Functions involved, s 7→ sRα(q, s), s 7→ Rα(q, s), s 7→ s and s 7→ s2,
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are all bounded continuous on [0, 1], so all sums converge to integrals when partition is
refined, i.e. when N → ∞. Thus

lim
N→∞

plim
n→∞

τ̂N,n(q) =
∫ 1

0 sRα(q, s)ds −
∫ 1

0 sds
∫ 1

0 Rα(q, s)ds∫ 1
0 s2ds −

(∫ 1
0 sds

)2 .

Solving the integrals using expression for Rα(q, s), one gets τ(q) as in (4).
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